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Abstract—In this paper, we provide a distributed optimization
algorithm, termed as TV-AB, that minimizes a sum of convex
functions over time-varying, random directed graphs. Contrary
to the existing work, the algorithm we propose does not require
eigenvector estimation to estimate the (non-1) Perron eigenvector
of a stochastic matrix. Instead, the proposed approach relies on
a novel information mixing approach that exploits both row-
and column-stochastic weights to achieve agreement towards the
optimal solution when the underlying graph is directed. We
show that TV-AB converges linearly to the optimal solution
when the global objective is smooth and strongly-convex, and the
underlying time-varying graphs exhibit bounded connectivity, i.e.,
a union of every C consecutive graphs is strongly-connected. We
derive the convergence results based on the stability analysis of
a linear system of inequalities along with a matrix perturbation
argument. Simulations confirm the findings in this paper.

Index Terms—Optimization, distributed algorithms, first-order
methods, time-varying graphs, directed graphs.

I. INTRODUCTION

With the advent of 5G, promising higher bandwidth and
faster data rates, emerging technologies like the Internet of
Things, self-driving cars, and smart devices are coming to the
forefront. In these applications, it is of paramount interest
to learn hidden parameters from the data collected by the
individual units [1]. For example, self-driving cars rely heavily
on computer vision in order to correctly identify pedestrians,
highway lanes, or traffic signs in all light and weather condi-
tions. Problems such as these can be framed as classification,
regression, or risk minimization, at the heart of which is a
simple sum of cost optimization. The sheer size of data and
privacy concerns limit data sharing and thus solutions to the
underlying optimization problems must be developed that are
local and distributed [2]–[4]. However, departing from the
traditional approaches, what is needed now are algorithms that
are applicable to mobile and autonomous agents resulting in
a time-varying and non-deterministic information exchange.

Recently, there has been a large body of work on distributed
optimization, where the goal is to minimize a sum of costs:

min
x

1

n

∑n
i=1 fi(x),

such that each objective function, fi : Rp → R, is private
to agent i. In order to solve this problem, the agents ex-
change information with nearby nodes over a sparse commu-
nication graph. Such problems arise for example in sensor
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networks [5], large-scale machine learning [6], [7], distributed
estimation [8], and localization [9]. When the graphs are
static and undirected, early work on first-order methods in-
clude [10]–[12] with the convergence rate of O( ln k√

k
) for

arbitrary convex functions and O( ln k
k ) for strongly-convex

functions, where k denotes the number of iterations. The
sublinear convergence is due to the use of diminishing step-
sizes. The rate improves to linear with a constant step-size
but at the expense of a sub-optimal solution [13]. Methods
based on Lagrangian dual [14], [15] converge faster but suffer
from a high computational burden as they require solving a
subproblem at each iteration.

Optimization over directed graphs is developed in [16]–[18],
where push-sum [19], [20] is used to achieve consensus among
the agents. The convergence rate, with diminishing step-sizes,
is O( ln k√

k
) for arbitrary convex functions and O( ln k

k ) for
strongly-convex functions. In contrast, Refs. [21], [22] use an
alternate approach called surplus consensus [23] to achieve
consensus but with the same convergence rates as [16]–[18].
The main reason for slow convergence is that a local gradient
is used at each agent, which requires diminishing step-sizes to
ensure optimality. To overcome this challenge, Refs. [24]–[26]
replace the local gradient with an estimate of the global gradi-
ent, with the help of dynamic consensus [27] over undirected
graphs, and show linear convergence to the optimal solution.
This gradient estimation approach was combined with push-
sum (type) methods in [26], [28]–[30] to achieve linear con-
vergence to the optimal solution over directed graphs. Related
work along these lines also include [31] over undirected graphs
and [32] over directed graphs that are related to [26], [28].
An alternate approach that builds on [21], [22] and does not
use push-sum has been recently developed in [33], where a
row- and a column-stochastic matrix are used simultaneously
to achieve linear convergence to the optimal over directed
graphs. Accelerated methods can be found in [34]–[36], while
non-convex problems are considered in [37].

In this paper, our focus is on time-varying directed graphs.
Early work on time-varying communication among the agents
can be found in [38], [39], where the exchange is undirected
and in [40], where the exchange is directed. These methods are
built on local gradients at each agent and are thus sublinear.
Recent work includes [41], where the authors establish a
geometrically converging distributed optimization algorithm
over directed graphs under uncoordinated yet bounded step-
sizes, and [42], where agents communicate over graphs subject
to random link failures. Work on random graphs can be found
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in [43], where the problem of constrained convex optimization
is investigated for non-differentiable costs under Markovian
communication model. For random networks modeled by a
sequence of independent, identically distributed (IID) random
matrices drawn from the set of symmetric, stochastic matrices
with positive diagonals, [44] proposes two accelerated dis-
tributed Nesterov-like gradient methods featuring resiliency to
link failures, reduced computational load, and improved con-
vergence rates compared to other gradient methods. Ref. [45]
establishes a convergence rate of O( 1

k ) for distributed stochas-
tic gradient methods over temporally IID random undirected
graphs for strongly-convex costs when local gradients are
subject to noise that is IID in time and has a finite second
moment. Furthermore, asynchronous multi-agent optimization
is considered in [46], where the authors adapt the curvature es-
timation technique of the Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton optimization method [47]–[49] for use in asyn-
chronous distributed settings over undirected graphs [50].
An asynchronous implementation of subgradient-push [18]
algorithm is also recently developed in [51].

In this paper, we use gradient estimation as was used
in [24]–[26], [28] and extend the AB algorithm introduced
in [33] to time-varying, random directed graphs. Of relevance
in this context is Ref. [26], which uses gradient estimation
and push-sum consensus [19], [20] to implement distributed
optimization over time-varying graphs. However, the push-
sum based methods [26], [28]–[30] involve estimating the
(non-1) Perron eigenvector of a stochastic matrix and an ap-
propriate scaling with the estimated eigenvector components.
The eigenvector estimation adds conservatism to the overall
algorithm as its convergence may dominate the overall rate.
In contrast, the AB algorithm [33] does not require such
eigenvector estimation and employs both row- and column-
stochastic weights in a novel way. The time-varying algorithm
proposed in this paper, termed as TV-AB, thus is applicable to
time-varying, directed graphs without the need of eigenvector
estimation resulting from push-sum.

The TV-AB algorithm we introduce involves a unique and a
rather counter-intuitive way of mixing information among the
agents. As the graph at each iteration may not be strongly-
connected, the mechanics of TV-AB can be explained over
a single directed edge, i −→ j. First, we note that TV-
AB involves two state updates: one with a row-stochastic
weight matrix, A, and the other with a column-stochastic
weight matrix, B. The update involving A is standard where
the receiving agent j implements a sum-preserving update to
its past and the incoming information from agent i , while
agent i assigns a weight of 1 to its past since it does not
receive any information. However, the additional update with
the column-stochastic weights, B, requires the transmitting
agent i to implement a strictly stable update (by assigning
a weight less than 1 to its past) and the receiving agent to
implement an unstable update (by assigning weights that sum
to > 1 to its past and the incoming information from agent i)
in order to maintain column-stochasticity of B. In other words,
the updates involving B are not sum-preserving unlike the
traditional information fusion.

We show that TV-AB converges linearly to the optimal

solution when each local objective is smooth and the global
objective is strongly-convex. The graph at each iteration can be
generated randomly in an arbitrary fashion as long as the union
of every C consecutive graphs is strongly-connected. This
notion is known as bounded connectivity and is standard in the
consensus and optimization literature on time-varying graphs,
see e.g., [18], [26]. The bounded connectivity notion enables
us to obtain more concrete convergence results as without this
assumption, the analysis is restricted to the expected behavior
of the optimization algorithm, see e.g., [39], [42], [44]. We
show linear convergence with the help of a linear system of
inequalities along with a matrix perturbation argument.

We now describe the rest of the paper. Section II formulates
the problem and introduces the assumptions necessary to
algorithm development. Section II-A develops and interprets
the time-varying AB algorithm. Details on the convergence
analysis are presented in Section III while Section IV states the
main result. Finally, Section V provides numerical experiments
and Section VI contains the concluding remarks.

Notation: We denote column vectors by lowercase bold
letters, x, and matrices by uppercase italics, X . The n × n
identity matrix and the n-dimensional column vector of all
ones are denoted by In and 1n, respectively, where the
dimension subscripts are dropped if clear from the context. We
denote by X ⊗ Y , the Kronecker product of two matrices, X
and Y , while ρ(X) denotes the spectral radius for a matrix, X .
For a vector, x, its ith element is denoted by [x]i, while for
a matrix, X , its (i, j)th element is denoted by [X]i,j . The
notation ‖ · ‖2 denotes the Euclidean norm for vectors and the
spectral norm for matrices, whereas ‖ · ‖max denotes the l∞-
norm on the set of square matrices.

II. PROBLEM FORMULATION AND ALGORITHM

In this section, we formulate the distributed optimiza-
tion problem, state the assumptions, and introduce the TV-
AB algorithm. To this aim, we assume that the set of
agents, V = {1, 2, · · · , n}, communicate according to a time-
varying directed graph, Gk(V , Ek), where k is the discrete-
time index and Ek is the set of directed communication links
at time k. An agent j can send information to an agent i,
i.e., j −→ i, at time k, if and only if (i, j) ∈ Ek. The goal of
the agents is to collaboratively solve the following problem:

Problem 1: min
x
f(x) =

1

n

∑n
i=1 fi(x), (1)

where each local objective function, fi : Rp 7→ R, is held
privately at agent i. We next formalize the set of assumptions
that are standard in the distributed optimization literature.

Assumption 1 (Strong-convexity). The global objective func-
tion f , is µ-strongly-convex, i.e.,

f(x) ≥ f(y) +∇f(y)>(x− y) +
µ

2
‖x− y‖22 (2)

for any x, y ∈ Rp, where µ > 0.

For Assumption 1 to hold it suffices that each fi is convex and
at least one of them is strongly-convex. Under this assumption,
Problem 1 has a unique optimal solution, denoted by x∗.
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Assumption 2 (Smoothness). Each fi is `i-smooth, i.e., it is
differentiable and has a Lipschitz-continuous gradient. Math-
ematically, there exists `i > 0 such that

‖∇f i(x)−∇f i(y)‖2 ≤ `i‖x− y‖2, (3)

for any x, y ∈ Rp and ∀i ∈ V .

Assumption 2 implies that f =
∑
i fi is ¯̀-smooth,

where ¯̀= 1
n

∑n
i=1 `i. Furthermore, collecting the local vari-

ables in column vectors, i.e.,

x =

x
1

...
xn

 , f(x) =

f1(x1)
...

fn(xn)

 , ∇f(x) =

∇f1(x1)
...

∇fn(xn)

 ,
we note that f is L-smooth, where L = maxi{`i}.

Assumption 3 (C-bounded strong-connectivity). For the se-
quence {Gk = (V, Ek ⊆ V × V)} of time-varying di-
rected graphs, there exists some positive integer C such that
the aggregate digraph GCk , (V ,∪k+C−1l=k El) is strongly-
connected ∀ k ≥ 0.

Assumption 4 (Weights). For the sequence {Gk = (V, Ek)}
of time-varying directed graphs and the sequences, {Ak}
and {Bk}, of n × n matrices compliant with Gk,
i.e., (i, j) ∈ Ek ⇔ [Ak]i,j , [Bk]i,j 6= 0, the following hold.

(i) Stochasticity: {Ak} and {Bk} are row- and column-
stochastic, respectively.

(ii) Aperiodicity: Gk has self-loops; i.e., [Ak]i,i > 0
and [Bk]i,i > 0, ∀ i ∈ V and ∀ k ≥ 0.

(iii) Uniform positivity: There are scalars 0 < α, β < 1 such
that [Ak]i,j ≥ α and [Bk]i,j ≥ β, ∀ (i, j) ∈ Ek, k ≥ 0.

The strong-connectivity bound C introduced in Assumption 3
and the uniform positivity bounds α and β in Assumption 4
are not required to be known at any of the agents. They are
only used in the analysis of the algorithm.

A. Algorithm Development

We now describe the TV-AB algorithm to solve Problem P1.
At each time k, agent i ∈ V maintains two variables, xik, yik ,
both in Rp, initialized with arbitrary xi0 and yi0 = ∇f i(xi0).
The xik-update at each agent is essentially gradient descent, al-
beit after mixing incoming information, and where the descent
direction is given by an estimate of the global gradient, yik,
instead of the local gradient, ∇fi(xik). The yik-update at each
agent tracks the global gradient and is based off of column-
stochastic weights.

We first use a simple framework to explain the algorithm
where only one edge i −→ j is active at time k. The xk-update
follows the standard sum-preserving notion where weights
assigned to the past information are non-negative and sum to 1:

xik+1 =xik − ηyik, ∀ i 6= j,

xjk+1 =[Ak](j,i)x
i
k + [Ak](j,j)x

j
k − ηy

j
k,

where η is a constant step-size. The weight matrix, Ak,
behind this update is row-stochastic: Each diagonal ele-
ment, [Ak](i,i) = 1, ∀ i 6= j, while the jth row has only two
positive elements such that [Ak](j,i) + [Ak](j,j) = 1.

Defining the auxiliary variable zik+1 as the successive differ-
ence, ∇f i(xik+1)−∇f i(xi

k), of the gradients, with zi0 = 0p,
the yk-update is given by

ymk+1 =[Bk](m,m)y
m
k + zmk+1, m 6= i,m 6= j,

yik+1 =[Bk](i,i)y
i
k + zik+1,

yjk+1 =[Bk](j,i)y
i
k + [Bk](j,j)y

j
k + zjk+1.

Note that every column of Bk, except the ith, has only one non-
zero element as no agent other than i is transmitting. Hence,
for Bk to be column-stochastic, [Bk](j,j) = 1, ∀j 6= i. For the
transmitting agent, we have [Bk](i,i)+[Bk](j,i) = 1. In contrast
to the traditional row- or doubly-stochastic updates, the yik+1-
update is locally stable as [Bk](i,i) < 1, while the yjk+1-update
is locally unstable as [Bk](j,i) + [Bk](j,j) > 1.

B. The TV-AB Algorithm

The simple scenario discussed above can be generalized to
arbitrary graphs, resulting into the following algorithm:

xik+1 =
n∑
j=1

[Ak]i,jx
j
k − ηy

i
k, (4a)

yik+1 =
n∑
j=1

[Bk]i,jy
j
k + zik, (4b)

where the weights [Ak]i,j and [Bk]i,j satisfy Assumption 4.
Letting Ak , Ak ⊗ Ip and Bk , Bk⊗Ip, we present Eqs. (4)
in a vector-matrix form, where the local variables xiks
and yiks and gradients ∇f i(xik) are stored in the column
vectors xk, yk, and ∇f(xk), respectively:

xk+1 = Akxk − ηyk, (5a)
yk+1 = Bkyk + zk, (5b)

where zk = ∇f(xk)−∇f(xk−1), and z0 = 0np. The weight
matrices, Ak and Bk, are row- and column-stochastic, respec-
tively. However, since each Gk is not necessarily strongly-
connected, the weightsAk and Bk are not necessarily primitive
or irreducible; thus, the standard Perron-Frobenius arguments
are not applicable here. To overcome this isse, we use the
notions of absolute probability sequences, ergodicity, and
multi-step contractions, a recap of these concepts is provided
in the Appendix: Section A.

III. CONVERGENCE ANALYSIS

To proceed with the analysis, we perform a state transforma-
tion: sk = (V −1k ⊗ Ip)yk on yk, where Vk = diag[vk] and vk
follows Eq. (6a). The TV-AB algorithm is thus equivalently
written as

vk+1 = Bkvk, (6a)
xk+1 = Akxk − η(Vk ⊗ Ip)sk, (6b)

sk+1 = Rksk + (V −1k+1 ⊗ Ip)(∇f(xk+1)−∇f(xk)), (6c)

where v0 = 1n, Rk , Rk ⊗ Ip, and Rk = V −1k+1BkVk. It
can be verified that {Rk} is a sequence of row-stochastic
matrices for which the absolute probability sequence is {vk};
see Appendix: Section A on absolute probability sequences.
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We now proceed with the convergence analysis of the
equivalent algorithm in Eqs. (6a)-(6c). Our approach rests on
a few quantities that we describe next:

(i) xw
k = (φ>k ⊗ Ip)xk, which is the average of xik’s

weighted by the absolute probability sequence, {φk},
of Ak’s, see Corollary 1 in the Appendix: Section A;

(ii) x̃w
k = xk − 1n ⊗ xw

k , which can be regarded as the
weighted consensus error in the network;

(iii) rk = 1n ⊗ xw
k − 1n ⊗ x∗, which is the optimality gap

associated with the weighted average;
(iv) s̃w

k = sk − (1nv
>
k ⊗ Ip)sk, which is an error term

corresponding to gradient estimation.
With the help of these quantities, we define the vector

tk =

‖x̃w
k‖2

‖rk‖2
‖s̃w
k‖2

 , (7)

and show that it goes to zero as k →∞. Clearly, if tk → 0,
then xk → 1n ⊗ x∗, and rate of convergence of TV-AB is
upper bounded by the rate at which tk → 0. To establish
that tk → 0, we derive a linear system of inequalities that
expresses the evolution of tk in the following form: tk+1

...
tk−(C−2)

 ≤M(η)

 tk
...

tk−(C−1)

 , (8)

where the elements of M(η) are the coefficients of the linear
system. Clearly, if ρ(M(η)) < 1, then xk → 1n ⊗ x∗ at least
at the rate of O(ρ(M(η))k).

Fig. 1 provides a roadmap to establish Eq. (8). The next
four lemmas provide the corresponding inequalities, whereas
the proofs are deferred to the Appendix. The system of Eq. (8)
is then analyzed in the next subsection.

�x𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘
w

2

r𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘 2

�s𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘
w

2

y𝑘𝑘 2
Lemma 1

�x𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘
w

2

r𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘 2

�s𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘
w

2

�x𝑘𝑘+1w
2

Lemma 2

�x𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘
w

2

r𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘 2

�s𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘
w

2

rk+1 2
Lemma 3

�x𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘
w

2

r𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘 2

�s𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘
w

2

�s𝑘𝑘+1w
2

Lemma 4

Fig. 1: Roadmap of deriving the linear system of inequalities.

Remark 1. The constant C = max{CA, CB} used in the rest
of the paper, ensures concurrent multi-step contractions for
both variables x̃w

k and s̃w
k; see Lemma 7 and Corollary 2 in

the Appendix: Section A for more details.

Lemma 1. The following inequality holds ∀ k ≥ 0:

‖yk‖2 ≤nL‖x̃w
k‖2 + nL‖rk‖2 + ‖s̃w

k‖2.

Proof: See Appendix: Section B.

Lemma 2. The following inequality holds ∀ k ≥ C − 1:

‖x̃w
k+1‖2 ≤

(
γA + ηQAnL

)
‖x̃w

k−(C̄−1)‖2 + ηQAnL

C−2∑
l=0

‖x̃w
k−l‖2

+ ηQAnL
(
‖rk−(C̄−1)‖2 +

C−2∑
l=0

‖rk−l‖2
)

+ ηQA
(
‖s̃w
k−(C̄−1)‖2 +

C−2∑
l=0

‖s̃w
k−l‖2

)
,

where γA and QA are the constants defined in Lemma 7 in
the Appendix: Section A.

Proof: See Appendix: Section C.

Lemma 3. The following inequality holds ∀ k ≥ 0:

‖rk+1‖2 ≤ηnL‖x̃w
k‖2 +

(
1− η µ

nnC−1

)
‖rk‖2 + η

√
n‖s̃w

k‖2.

Proof: See Appendix: Section D.

Lemma 4. The following inequality holds ∀ k ≥ C − 1:

‖s̃w
k+1‖2 ≤m

√
n(2 + ηL)

(
‖x̃w

k−(C−1)‖2 +

C−2∑
l=0

‖x̃w
k−l‖2

)

+ ηmnL
(
‖rk−(C−1)‖2 +

C−2∑
l=0

‖rk−l‖2
)

+ (ηm+ γB)‖s̃w
k−(C−1)‖2 + ηm

C−2∑
l=0

‖s̃w
k−l‖2,

where m = nnCQBL, and γB and QB are the constants
defined in Corollary 2 in the Appendix: Section A.

Proof: See Appendix: Section E.

A. The resulting linear system of inequalities
Summarizing the results of Lemmas 2-4, for 0 < η < 2

nL ,
Eq. (8) can be expanded as follows:

tk+1 ≤

 ηQAnL ηQAnL ηQA
ηnL 1− η µ

nnC−1 η
√
n

m
√
n(2 + ηL) ηmnL ηm


︸ ︷︷ ︸

M1

tk

+

 ηQAnL ηQAnL ηQA
0 0 0

m
√
n(2 + ηL) ηmnL ηm


︸ ︷︷ ︸

M2

(tk−1 + . . .+ tk−(C−2))

+

γA + ηQAnL ηQAnL ηQA
0 0 0

m
√
n(2 + ηL) ηmnL γB + ηm


︸ ︷︷ ︸

M
C

tk−(C−1),

which is equivalent to
tk+1

tk
tk−1

...
tk−(C−2)

 ≤

M1 M2 · · · M2 MC

I
I

. . .
I




tk
tk−1

...
tk−(C−2)

tk−(C−1)

 .
(9)
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The system matrix, M(η), in the above can be partitioned as
M0

1 · · · M0
2 M0

C
I

. . .
I


︸ ︷︷ ︸

M0

+η


ME

1 · · · ME
2 ME

C
0

. . .
0


︸ ︷︷ ︸

ME

, (10)

where

M0
1 =

 0 0 0
0 1 0

2m
√
n 0 0

, ME
1 =

QAnL QAnL QA
nL − µ

nnC−1

√
n

m
√
nL mnL m

,
M0

2 =

 0 0 0
0 0 0

2m
√
n 0 0

, ME
2 =

QAnL QAnL QA
0 0 0

m
√
nL mnL m

,
M0
C =

 γA 0 0
0 0 0

2m
√
n 0 γB

, ME
C =

QAnL QAnL QA
0 0 0

m
√
nL mnL m

.
Recall that our goal is to establish the geometric de-

cay of tk in Eq. (7). To this purpose, it is sufficient to
show ρ(M(η)) < 1. As a first step, we finish this section with
a lemma on the spectral radius of the matrix M0 in Eq. (10)
and its corresponding eigenvector.

Lemma 5. The spectral radius of the matrix M0 is 1
and λ = 1 is a simple eigenvalue of M0. The left and right
eigenvectors, M0u = u,w>M0 = w>, are given by

u = 1C ⊗
[
0 1 0

]>
, (11)

w> =
[
0 1 0 · · · 0

]
. (12)

Proof: See Appendix: Section F.

IV. LINEAR CONVERGENCE

We now state the main convergence result for TV-AB.

Theorem 1. The spectral radius of M(η) is strictly less
than 1 when η is sufficiently small. Therefore ‖xk−1n⊗x∗‖2
converges to zero (at least) at the rate of O

(
ρ(M(η))k

)
.

Proof: From Lemma 5, let q(η) be the simple eigenvalue
of M(η), as a function of η, for which q(0) = 1. Recall
that M(η) can be partitioned as M0 + ηME from Eq. (10).
Borrowing a result from matrix perturbation theory [52, The-
orem 6.3.12], we have that

dq(η)

dη

∣∣∣∣
η=0

=
w>MEu

w>u
,

where u and w are right and left eigenvectors corresponding
to the simple eigenvalue, q(0). From Lemma 5, it can be
verified that w>u = 1 and w>MEu = −µ/nnC−1 < 0,
which implies that d

dη q(η) is negative. Since the eigenvalues
are a continuous function of the elements of a matrix, we
have that q(η) decreases for a sufficiently small η (slightly
increasing from zero) and the theorem follows.

V. NUMERICAL EXPERIMENTS

This section illustrates the application and performance of
the time-varying AB algorithm in a variety of numerical
experiments. In the rest of this section, we adopt a simple
uniform weighting strategy to construct the row- and column-
stochastic weights [Ak]i,j and [Bk]i,j :

[Ak]i,j =

{
1/dik,in, (i, j) ∈ Ek,

0, (i, j) /∈ Ek,
(13)

where dik,in is the in-degree of agent i at time k; and

[Bk]i,j =

{
1/djk,out, (i, j) ∈ Ek,

0, (i, j) /∈ Ek,
(14)

where djk,out is the out-degree of agent j at time k.

A. Distributed binary classification

In this experiment, we study a binary classification problem
using regularized logistic regression. Each agent i has ac-
cess to mi training samples: (ci

(j)
, yi

(j)
) ∈ Rp−1 × {−1, 1},

for j = 1, 2, · · · , mi, where ci(j) is the p−1-dimensional fea-
ture vector of the jth training sample at the ith agent and yi(j)

is the corresponding binary label. The agents collaboratively
solve the following distributed logistic regression problem:

min
w,b

f(w, b) =
n∑
i=1

fi(w, b),

where the private loss function fi at agent i is

fi(w, b) =

mi∑
j=1

ln

[
1 + e

(
−w>ci(j)+b

)
yi

(j)
]

+
λ

2

(
‖w‖22 + b2

)
.

The decision variable w represents the model weights assigned
to the features and b is the bias term. It is straightforward to
verify that the local loss functions fi satisfy both Assump-
tions 1 and 2. The feature vectors, ci(j), are drawn from IID
Gaussian distributions with mean 0 and variance 9. We then
generate binary labels from a Bernoulli distribution, with
probability of yi(j) = +1 being (1 + ex̃

>ci(j)

)−1, where w
and b are drawn from the standard uniform distribution. The
network topology varies according to the periodic sequence
of directed graphs as shown in Fig. 2 making the directed
communication network 4-bounded strongly connected.

Fig. 2: Periodic time-varying topology, where the period is 4.
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To solve the classification problem in a distributed manner,
agents initialize their states xi0 according to IID zero-mean
Gaussian random variables with variance 9. The performance
of TV-AB along with Push-DIGing [26], and subgradient-
push [18] (with constant and diminishing step-sizes) is shown
in Fig. 3 with the average residual 1/n

∑n
i=1 ‖xik − x∗‖2 as

the evaluation metric. The step-sizes for TV-AB and Push-
DIGing are hand-optimized. This numerical experiment con-
firms that time-varying AB converges linearly and is observed
to be faster than Push-DIGing.

0 200 400 600 800 1000 1200 1400

10-15

10-10

10-5

100

0 5 10 15 20 25 30 35 40
10-2

10-1

100

Fig. 3: Distributed logistic regression: Performance compari-
son with the transients magnified.

B. Distributed least-squares

In this example, n = 60 agents communicate according to a
time-varying sequence of C = 50-bounded strongly-connected
digraphs. The nodes are partitioned into 5 equally-sized clus-
ters, and each cluster is internally strongly-connected at every
iteration. The clusters communicate with each other according
to a strongly-connected cluster-level network every C = 50th

iteration, see Fig. 4. The agents aim to collaboratively find the
solution x∗ of the following least-squares problem:

f(x) =
∑n
i=1 fi(x) = 1

2

∑n
i=1 ‖Hix− bi‖22,

where the vectors and matrices are of appropriate dimension.
We choose each Hi such that it is rank-deficient but

∑
iH
>
i Hi

is invertible. In other words, no agent can find x∗ on its own
and must cooperate.

To collaboratively solve the least-squares problem, agents
initialize there states xi0 according to IID standard Gaussian
random variables. The performance of tTV-AB is compared
with Push-DIGing and subgradient-push (with both constant

Fig. 4: C = 50-bounded strongly-connected digraph: The
inter-cluster graph activates every 50th iteration.

and diminishing step-sizes) in Fig. 5 with the average resid-
ual 1/n

∑n
i=1 ‖xik − x∗‖2 as the comparison metric. The

step-sizes follow a similar regime as in Experiment V-A.
This numerical experiment, once again, confirms the linear
convergence of AB to the optimal solution provided the step-
size is sufficiently small.

0 0.5 1 1.5 2 2.5 3 3.5 4

105

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

100

0 100 200 300 400 500 600 700 800 900 1000

10 -1

100

Fig. 5: Distributed least squares: Performance comparison with
the transients magnified.

C. TV-AB on random graphs

We now apply TV-AB to random networks. In this sce-
nario, n = 80 agents communicate over a C = 15-bounded
strongly-connected network to solve the logistic regression
problem of example V-A. The agents communicate over a
strongly-connected random graph every 15th iteration and rely
solely on local iterations for the rest of the time. The result
of this experiment is presented in Fig. 6.
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0 1000 2000 3000 4000 5000 6000
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100

Fig. 6: Distributed logistic regression over random graphs:
Performance comparison with the transients magnified.

In another scenario, 10 agents communicate according to the
gossip protocol explained in Section II-A. The optimization
problem is linear regression given 10 noisy samples of a line
at each agent. The performance is compared in Fig. 7 with
hand-optimized step-size.

0 1000 2000 3000 4000 5000 6000
10-10

10-8

10-6

10-4

10-2

100

Fig. 7: Distributed linear regression : TV-AB under gossip.

VI. CONCLUSIONS

In this paper, we study TV-AB that minimizes a sum
of smooth and strongly-convex functions over time-varying
and possibly random directed graphs. We show that TV-AB
converges linearly to the optimal solution when underlying
time-varying graphs satisfy the standard bounded connectivity
assumption, i.e., a union of every C consecutive graphs is
strongly-connected. We derive the convergence result based
on the stability analysis of a linear system of inequalities
along with a matrix perturbation argument. We further provide
extensive simulations that confirm the findings in this paper.

APPENDIX

A. Preliminaries

In this section, we recap some preliminaries that are used
in the analysis. We start with the definitions of absolute
probability sequences [53] and ergodicity [54].

Definition 1 (Absolute Probability Sequence). For row-
stochastic matrices, {Rk}, an absolute probability sequence
is a sequence {πk} of stochastic vectors such that

π>k = π>k+1Rk, ∀k ≥ 0.

Definition 2 (Ergodicity). A ergodic sequence of row-
stochastic matrices, {Rk}, is such that for integers p ≥ 0
and all i, s = 1 , · · · , n

lim
c→∞

[U(c,p)]i,s → dps ,

where U(c,p) = Πc
l=pRl is the backward product of {Rk}

and dps is a constant not depending on i.

We next state a result on the ergodicity of the matrix sequence
compliant with the aggregate digraph GCsC = (V,∪sC+C−1

l=sC El),
see [55, Lemma 5.2.1] for details.

Lemma 6. Under Assumptions 3 and 4, the row-stochastic
matrix sequence {Ds = ΠsC+C−1

l=sC Al} compliant with the ag-
gregate digraph GCsC = (V,∪s+C−1l=sC El), for all s ≥ 0, is
ergodic, i.e.,

lim
t→∞

Dt · · ·Ds+1Ds = 1µ>s ,

where {µs} is the unique absolute probability sequence
for {Ds} (see, e.g., [53], [56, Lemma 1]) and is uniformly
bounded away from zero, i.e., there exists δ ∈ (0, 1) such
that [µs]i ≥ δ, ∀ i ∈ V and ∀ s ≥ 0. Furthermore, the conver-
gence rate is geometric, i.e., ∀ t ≥ s ≥ 0:

‖Dt · · ·Ds+1Ds − 1µ>s ‖ ≤ Mqt−s,

where the constants M > 0 and q ∈ (0, 1) depend only on n
and α introduced in Assumption 4.

The next corollary extends the result above, deriving the
absolute probability sequence for the sequence {Ak} in terms
of {µk} in Lemma 6.

Corollary 1. Under the assumptions of Lemma 6, the se-
quence {φk} is an absolute probability sequence for the
matrix sequence {Ak}, where

φ>k =µ>k , k = sC,

φ>k =µ>(s+1)CA(s+1)C−1 · · ·Ak, k ∈
(
sC, (s+ 1)C

)
,

(15)

for some s ≥ 0.

Proof: Since the products A(s+1)C−1 · · ·Ak are row-
stochastic and {µs} is an absolute probability sequence from
Lemma 6, each µs is a stochastic vector by definition and so
is the vector φk in Eq. (15). In fact,

φ>k =µ>(s+1)CA(s+1)C−1 · · ·Ak,
=µ>(s+1)CA(s+1)C−1 · · ·Ak+1 Ak = φ>k+1Ak,

i.e., the sequence {φk} is an absolute probability sequence
for {Ak}.
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The next lemma from [26, Lemma 5.3] establishes multi-
step contraction of a backward product of a series of row-
stochastic matrices {Ak}. This result is fundamental to the
convergence analysis of TV-AB.

Lemma 7 (CA-step contraction for {Ak}). Let Assumptions 3
and 4 hold. Recall that Ak = Ak ⊗ Ip and define an integer
CA ≥ C such that

γA , QA(1− αnC)
CA−1

nC < 1, QA = 2n
1 + α−nC

1− αnC
. (16)

Then for any k ≥ CA − 1 and any vector b ∈ Rnp, if

a = A(CA,k−(CA−1))b,

where A(CA,k−(CA−1)) , Ak · · · Ak−(CA−1), we have∥∥((In − 1nφ
>
k+1)⊗ Ip

)
a
∥∥
2

≤ γA
∥∥((In − 1nφ

>
k−(CA−1))⊗ Ip

)
b
∥∥
2
,

where {φk} is the absolute probability sequence of {Ak},
defined in Eq. (15).

The next corollary establishes the multi-step contraction
for the sequence {Rk} = V −1k+1BkVk, where Vk = diag[vk]
and {vk} evolves as Eq. (6a).

Corollary 2 (CB-step contraction for {Rk}). Let Assump-
tions 3 and 4 hold. Recall that Rk = Rk ⊗ Ip and define an
integer CB ≥ C such that

γB , QB(1− τnC)
CB−1

nC < 1, QB = 2n
1 + τ−nC

1− τnC
, (17)

where τ = β
nnC+1 ; then for any k ≥ CB − 1 and any

vector b ∈ Rnp, if

a = R(CB,k−(CB−1))b,

where R(CB,k−(CB−1)) = Rk · · ·Rk−(CB−1), we have∥∥((In − 1nv
>
k+1)⊗ Ip

)
a
∥∥
2

≤γB
∥∥((Inp − 1nv

>
k−(CB−1)

)⊗ Ip
)
b
∥∥
2
.

Proof: It can be verified that

((In − 1nv
>
k+1)⊗ Ip)R(CB,k−(CB−1))

=((R(CB,k−(CB−1)) − 1nv
>
k−(CB−1))(In − 1nv

>
k−(CB−1)))⊗ Ip.

Therefore, ∥∥((In − 1nv
>
k+1)⊗ Ip

)
a
∥∥

2

≤
∥∥R(CB,k−(CB−1)) − 1nv

>
k−(CB−1)

∥∥
2
·∥∥((In − 1nv

>
k−(CB−1))⊗ Ip)b

∥∥
2
,

where the inequality follows from the compatibility
of vector 2-norm with matrix spectral norm. We
now find an upper bound for the first term on the
right hand side of the above equation. First note
that [Rk]i,j = [Bk]ij [vk]j/[vk+1]i. From [18, Corollary 2(b)],
we have that [vk]j ≥ 1/nnC , ∀ k ≥ 0. Since 1/[vk]j ≥ 1/n
and for any (i, j) ∈ Ek, [Bk]i,j ≥ β by Assumption 4, we have
that in [Rk]i,j ≥ τ , β/nnC+1, for any (i, j) ∈ Ek. Therefore,

noting that for an n× n matrix, X , ‖X‖2 ≤ n‖X‖max, we
have ∥∥R(CB,k−(CB−1)) − 1nv

>
k−(CB−1)

∥∥
2

≤n
∥∥R(CB ,k−(CB−1)) − 1nv

>
k−(CB−1)

∥∥
max
≤ γB,

where γB , 2n 1+τ−nC

1−τnC (1− τnC)
CB−1

nC and the last inequality
is from [11, Lemma 4(c)].

Finally, the next lemma is a standard result in optimization
theory and states that the optimality gap in the domain space
shrinks by at least a fixed ratio for a gradient descent step.

Lemma 8 ( [57, Lemma 3.11]). Let g : Rp 7→ R
be µ-strongly-convex and have `-Lipschitz gradient. De-
fine x+ = x− ζ∇g(x), where 0 < ζ < 2/`. Then

‖x+ − x∗‖2 ≤ χ‖x− x∗‖2
where χ = max{|1− ζµ|, |1− ζ`|}.

In the following, we provide the proofs of the lemmas
described earlier in the paper.

B. Proof of Lemma 1.

Proof: Recall that sk = s̃w
k + (1nv

>
k ⊗ Ip)sk and it can

be verified that

(1nv
>
k ⊗ Ip)sk = (1n1

>
n ⊗ Ip)∇f(xk). (18)

Exploiting the optimality condition ∇f(1n ⊗ x∗) = 0np, we
can express sk as

sk =s̃w
k + (1n1

>
n ⊗ Ip)(∇f(xk)−∇f(1n ⊗ x∗)).

Therefore, from the triangle inequality we have

‖sk‖2 ≤ ‖s̃w
k‖2 +

√
n
∑n
i=1 ‖∇f i(x

i
k)−∇f i(x∗)‖2,

≤ ‖s̃w
k‖2 +

√
nL
∑n
i=1 ‖x

i
k − x∗‖2,

≤ ‖s̃w
k‖2 + nL

∥∥xk + (1nφ
>
k ⊗ Ip)(xk − xk)− 1n ⊗ x∗

∥∥
2
,

≤ ‖s̃w
k‖2 + nL‖x̃w

k‖2 + nL‖rk‖2.

where the second inequality uses Lipschitz continuity and the
third inequality is a consequence of Cauchy-Schwarz. Noting
that yk = (Vk ⊗ Ip)sk, we have ‖yk‖2≤‖(Vk ⊗ Ip)‖2‖sk‖2
from the compatibility of vector 2-norm with matrix spectral
norm. Next, since ‖(Vk ⊗ Ip)‖2 = ‖Vk‖2 = maxi[vk]i < 1,
we have

‖yk‖2 ≤‖sk‖2 ≤ nL‖x̃w
k‖2 + nL‖rk‖2 + ‖s̃w

k‖2,

and the lemma follows.

C. Proof of Lemma 2.

Proof: From Eq. (6b), we have

xk+1 =A(C,k−(C−1))xk−(C−1) − η
C−1∑
l=0

Al,k−(l−1)yk−l,

which leads to

‖x̃w
k+1‖2 =

∥∥((In − 1nφ
>
k+1)⊗ Ip

)
xk+1

∥∥
2

≤
∥∥((In − 1nφ

>
k+1)⊗ Ip

)
A(C,k−(C−1))xk−(C−1)

∥∥
2

+ η
∑C−1
l=0

∥∥((I − 1nφ
>
k+1)⊗ Ip

)
Al,k−(l−1)yk−l

∥∥
2
.
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Consequently, ∀ k ≥ C − 1,

‖x̃w
k+1‖2 ≤γA‖x̃w

k−(C−1)‖2 + ηQA
∑C−1
l=0 ‖yk−l‖2,

where the second term follows from [11, Lemma 4(c)]. From
Lemma 1, we have

‖x̃w
k+1‖2 ≤(γA + ηQAnL)‖x̃w

k−(C̄−1)‖2,

+ ηQAnL
∑C−2
l=0 ‖x̃

w
k−l‖2,

+ ηQAnL‖rk−(C̄−1)‖2 + ηQAnL
∑C−2
l=0 ‖rk−l‖2,

+ ηQA‖s̃w
k−(C̄−1)‖2 + ηQA

∑C−2
l=0 ‖s̃

w
k−l‖2,

where γA and QA are the constants defined in Lemma 7.

D. Proof of Lemma 3.

Proof: Note that yk − (vk1
>
n ⊗ Ip)yk = (Vk ⊗ Ip)s̃w

k ,
we have

‖rk+1‖2 =
∥∥(1nφ>k+1 ⊗ Ip)xk+1 − 1n ⊗ x∗

∥∥
2

=
∥∥(1nφ>k+1 ⊗ Ip)

(
Akxk − ηyk

+ (vk1
>
n ⊗ Ip)yk(−η + η)

)
− 1n ⊗ x∗

∥∥
2

≤η
∥∥(1nφ>k+1 ⊗ Ip)

(
yk − (vk1

>
n ⊗ Ip)yk

)∥∥
2

+
∥∥(1nφ>k ⊗ Ip)xk − 1n ⊗ x∗ − ηθk(1n1>n ⊗ Ip)yk

∥∥
2

≤ η
√
n‖s̃w

k‖2 +
∥∥(1nφ>k ⊗ Ip)xk − 1n ⊗ x∗

− ηθk(1n1>n ⊗ Ip)∇f(xk)
∥∥

2
, (19)

where θk = φ>k+1vk. From [11, Lemma 4(c)], we note
that θk ≥ 1/nnC , while θk ≤ 1, ∀k, from Cauchy-Schwarz.
The substitution of (1n1

>
n ⊗ Ip)yk by (1n1

>
n ⊗ Ip)∇f(xk)

follows a similar reasoning as in Eq. (18). Furthermore, the
second term on the right hand side of the above inequality can
be expressed as follows:∥∥1n ⊗ xw

k − nηθk∇f(1n ⊗ xw
k )− 1n ⊗ x∗>

+ nηθk∇f(1n ⊗ xw
k )− ηθk(1n1

>
n ⊗ Ip)∇f(xk)

∥∥
2

≤
∥∥1n ⊗ xw

k − nηθk∇f(1n ⊗ xw
k )− 1n ⊗ x∗>

∥∥
2

+ ηθk
∥∥1n ⊗ (∑n

i=1(∇f i(xw
k )−∇f i(xik))

)∥∥
2

≤
√
n‖xw

k − nηθk∇f(xw
k )− x∗‖2 + ηnL‖xw

k − xk‖2,

where the second term is due to Assumption 2. From
Lemma 8, if 0 < η < 2

nL < 2
nLθk

, we can bound the first
term on the right hand side and obtain
√
n‖xw

k − nηθk∇f(xw
k)− x∗‖2 ≤

√
nχk‖xw

k − x∗‖2 = χk‖rk‖2,

where

χk = max{|1− nηθkµ|, |1− nηθkL|}

=1− nηθ(k)µ ≤ 1− η µ

nnC−1

for η < 1
nL < 1

nLθk
. Going back to Eq. (19),

‖rk+1‖2 ≤η
√
n‖s̃w

k‖2 + χk‖rk‖2 + ηnL‖x̃w
k‖2

≤ηnL‖x̃w
k‖2 +

(
1− η µ

nnC−1
)
‖rk‖2 + η

√
n‖s̃w

k‖2,

and the lemma follows.

E. Proof of Lemma 4.

Proof: From Eq. (6c), we have

sk+1 =R(C,k−(C−1))sk−(C−1)

+
C−1∑
l=0

R(l,k−(l−1))(V
−1
k−(l−1) ⊗ Ip)zk−(l−1).

Applying triangle inequality, we get

‖s̃w
k+1‖2 = ‖((In − 1nv

>
k+1)⊗ Ip)sk+1‖2

≤‖((In − 1nv
>
k+1)⊗ Ip)R(C,k−(C−1))sk−(C−1)‖2

+

C−2∑
l=−1

‖((In − 1nv
>
k+1)⊗ Ip)R(l+1,k−l)(V

−1
k−l ⊗ Ip)zk−l‖2,

where R(l,k−l) = Inp for l ≤ 0. Therefore, ∀ k ≥ C − 1,

‖s̃w
k+1‖2 ≤γB‖((In − 1nv

>
k−(C−1))⊗ Ip)sk−(C−1)‖2

+QB
∑C−2
l=−1 ‖(V

−1
k−l ⊗ Ip)zk−l‖2,

where the second term follows [11, Lemma 4(c)]. With the
help of [18, Corollary 2(b)] and Corollary 2, we have

‖s̃w
k+1‖2 ≤γB‖s̃w

k−(C−1)‖2 + nnCQB
∑C−1
l=0 ‖zk−(l−1)‖2.

From Assumption 2, the summation in the second term can
be bounded as follows:∑C−1

l=0 ‖zk−(l−1)‖2≤L
∑C−1
l=0 ‖xk−(l−1) − xk−l‖2.

Furthermore,

‖xk−(l−1) − xk−l‖2
=
∥∥(Ak−l − Inp)

(
xk−l − (1nφ

>
k−l ⊗ Ip)xk−l

)
− ηyk−l

∥∥
2

≤‖Ak−l − Inp‖2‖x̃w
k−l‖2 + η‖yk−l‖2

Summing over l leads to

C−1∑
l=0

‖xk−(l−1) − xk−l‖2 ≤2
√
n‖x̃w

k−(C−1)‖2 + η‖yk−(C−1)‖2

+

C−2∑
l=0

(
2
√
n‖x̃w

k−l‖2 + η‖yk−l‖2
)
.

From Lemma 1, we have ∀ k ≥ C − 1:

‖s̃w
k+1‖2 ≤m(2

√
n+ ηLn) (‖x̃w

k−(C−1)‖2 +
∑C−2
l=0 ‖x̃w

k−l‖2)

+ ηnmL (‖rk−(C−1)‖2 +
∑C−2
l=0 ‖rk−l‖2)

+ (ηm+ γB)‖s̃w
k−(C−1)‖2 + ηm

∑C−2
l=0 ‖s̃w

k−l‖2,

and the lemma follows.

F. Proof of Lemma 5

Proof: Based on the successive application of Schur’s
determinant identity [52], [58], the characteristic polynomial
of M0 is given by (−1)C(λ− 1)(γA−λC)(γB−λC)λ(C−1).
Given that γA, γB ∈ (0, 1), the spectral radius of M0 is 1
and the corresponding eigenvalue, λ = 1, is simple. We now
proceed to find the corresponding right and left eigenvectors, u
and w, respectively.
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By decomposing u and w as follows,

u =

u
1

...
uC

 , w =

w
1

...
wC

 ,
where each ui,wi is in R3, from M0u = u, we get

γA[uC ]1 = [u1]1, ui = ui+1, 1 ≤ i ≤ C − 1,

resulting in [ui]1 = 0, ∀ i. Furthermore,

γB [uC ]3 + 2m
√
n

C∑
i=1

[ui]1 = [u1]3.

Therefore, γB [uC ]3 = [u1]3 which implies [ui]3 = 0, ∀ i. The
entries [ui]2 are free variables and we set them equal to 1, ∀ i.
Consequently, ui = u =

[
0 1 0

]>
and u = 1C ⊗ u.

Similarly, from w>M0 = w>, we have

2m
√
n[w1]3 + [wi+1]1 = [wi]1, i = 1, . . . , C − 1,

2m
√
n[w1]3 + γA[w1]1 = [wC ]1.

Summing over all i, we obtain

2Cm
√
n[w1]3 + γA[w1]1 = [w1]1. (20)

Furthermore,

[w1]2 + [w2]2 = [w1]2,
[w3]2 = [w2]2,

...
[wC ]2 = [wC−1]2,

[wC ]2 = 0,

resulting in [wi]2 = 0, ∀ 2 ≤ i ≤ C. Note that [w1]2 is a free
variable and we can set it equal to 1. Additionally,

[w2]3 = [w1]3,
[w3]3 = [w2]3,

...
[wC ]3 = [wC−1]3,

γB [w1]3 = [wC ]3,

resulting in [wi]3 = 0, which from Eq. (20) implies [wi]1 = 0,
for all i. Consequently,

w> =
[
0 [w1]2 = 1 0 0 · · · 0

]
.
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[11] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, Jan. 2009.

[12] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic control, vol. 57, no. 3, pp. 592–606,
2012.

[13] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.
1835–1854, Sep. 2016.

[14] E. Wei and A. Ozdaglar, “Distributed alternating direction method of
multipliers,” in 51st IEEE Annual Conference on Decision and Control,
Dec. 2012, pp. 5445–5450.

[15] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel, “D-
ADMM: A communication-efficient distributed algorithm for separable
optimization,” IEEE Transactions on Signal Processing, vol. 61, no. 10,
pp. 2718–2723, May 2013.

[16] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual
averaging for convex optimization,” in 51st IEEE Annual Conference on
Decision and Control, Dec. 2012, pp. 5453–5458.

[17] K. I. Tsianos, “The role of the network in distributed optimization
algorithms: Convergence rates, scalability, communication/computation
tradeoffs and communication delays,” Ph.D. dissertation, Dept. Elect.
Comp. Eng. McGill University, 2013.
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[56] A. Nedić and J. Liu, “On convergence rate of weighted-averaging
dynamics for consensus problems,” IEEE Transactions on Automatic
Control, vol. 62, no. 2, pp. 766–781, Feb. 2017.

[57] S. Bubeck, “Convex optimization: Algorithms and complexity,” arXiv
preprint arXiv:1405.4980, 2014.

[58] P. D. Powell, “Calculating determinants of block matrices,” arXiv
preprint arXiv:1112.4379, 2011.


	I Introduction
	II Problem Formulation and Algorithm
	II-A Algorithm Development
	II-B The TV-AB Algorithm

	III Convergence Analysis
	III-A The resulting linear system of inequalities

	IV Linear Convergence
	V Numerical Experiments
	V-A Distributed binary classification
	V-B Distributed least-squares
	V-C TV-AB on random graphs

	VI Conclusions
	Appendix
	A Preliminaries
	B Proof of Lemma ??.
	C Proof of Lemma ??.
	D Proof of Lemma ??.
	E Proof of Lemma ??.
	F Proof of Lemma ??

	References

